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Recently, the experimentally observed asymmetric properties of ion transport in charged conical nanopores
�CCNs� that resemble those in biological ion channels have attracted a lot of attention in theoretical studies in
nanotechnology research. In this paper, we report several tactics to study this effect by directly solving the
Poisson-Nernst-Planck �PNP� equations. The result shows that PNP equations can indeed quantitatively de-
scribe the properties of these nanopores. Based on our numerical solutions, we contribute the rectification
effect to ion-enrichment and ion-depletion. A detailed study of length dependence of current indicates that a
relatively long length is indispensable for the CCNs to have rectification effect. We suggest that PNP equations
and the calculation method could be further used to study other shapes of nanopores.
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I. INTRODUCTION

For the reasons that a synthetic charged conical nanopore
�1–3� in a polyethylene terephthalate �PET� membrane ex-
hibits asymmetric properties of ion transport that resemble
those in biological ion channels �4�, such as current rectifi-
cation �1,2,5–7� and ionic selectivity �8,9�, and its potential
applications for the detection of biomolecules, such as pro-
tein �10� and DNA �11,12�, there is extensive research on
exploring the basic physical properties of CCNs both in ex-
periment �1–3,5,6,8,9� and theory �5,8,9,13–17�. A full un-
derstanding of these asymmetric phenomena can not only
benefit the future studies on biological ion channels, but also
promote nanotechnological applications. Several models
have been proposed to explain this effect �14–17� but most
of them aimed at a qualitative explanation rather than a
quantitative fit with experimental data, and some of them are
based on several unclear assumptions. Thus, the unsubstan-
tiated assumptions in these models may overshadow the true
understanding of the mechanism of the asymmetric character
�see Siwy’s recent review �18� for an overview of these mod-
els�. In this work, we aim at providing a quantitative model
to explain the current rectification effect in CCNs, and give
more insight into ion transport properties in pores with na-
nometer size.

Our model is based on Poisson-Nernst-Planck �PNP�
theory of electrodiffusion, in which the mobile ions are rep-
resented as a continuous charge density. This theory has been
applied to study membrane electrochemistry �19�, ion trans-
port in nanofluidic channels �20–22� and the Gramicidin A
channel �23,24�. Corry et al. �25� showed that this continuum
theory still works well when the dimension of the nanopore
is more than about 1 nm. Therefore, solving PNP equations
directly should be a prospective way to understand all the ion
transport properties of conical nanopores. While PNP equa-
tions had been directly solved under different conditions

�20–24�, we found that in the case of CCNs in PET mem-
brane, the equations become numerically pathological and
are hard to converge. Cervera et al. �16,17�, in fact, had
systematically studied the rectification effect of conical nan-
opore with PNP equations and get good results. However, in
order to solve these equations, they neglected the influence
of both reservoirs connected to the nanopore and used sev-
eral assumptions to simplify the three dimension equations to
one dimension. In comparison, we developed some tactics to
solve PNP equations directly in the case of three dimensions,
and also the reservoirs are taken into consideration. Based on
our results, we get some definite results about the asymmet-
ric properties of conical nanopore in addition to explaining
the rectification effect.

Our model does not include any free parameters; all are
taken from experimental data, including surface charge den-
sity ���, the size of the nanopore, ion concentration of KCl
�n0�, and diffusion coefficients. The diffusion coefficients
taken from a bulk solution of infinite dilution may induce
some errors to our calculated result. Although they only
slightly decrease with the increase of concentration, they are
probably affected by the restricted geometries �18�. Never-
theless, how they decrease with restricted size has not been
fully understood, so we assume that in a dimension of sev-
eral nanometers the diffusion coefficients approximately
keep constant as in bulk solution. Our calculated result of
current versus voltage bias shows a good agreement with
experimental data, indicating that such an approximation
might be valid to nanopores with such a dimension. The
analysis of the model shows that the rectification effect is
mainly due to ion enrichment and depletion, and that a rela-
tively long length is indispensable for the conical pore to
have rectification effect. This study indicates that PNP equa-
tions are essentially applicable in nanopores with such a di-
mension, and can quantitatively explain the mechanism of
asymmetric properties of those kinds of charged conical na-
nopores.

II. THEORY AND MODEL

We suppose ion transport in nanofluidic channel is gov-
erned by Poisson-Nernst-Planck �PNP� equations, which
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combines Poisson equation that electrostatic potential ���
should obey, and Nernst-Planck equation that governs the ion
flux �J±�:

�2� = −
e

��0
�n+ − n−� , �1�

Ji = − Di��ni +
ieni

kT
� ��, i = + ,− , �2�

where e is the electron charge, �0 is the permittivity of
vacuum, � is the dielectric constant of water, ni is the con-
centration of ion species i �K+ or Cl−�, k is Boltzmann con-
stant, and T is the temperature of the solution. Together with
the steady state continuity constraint � ·Ji=0, Eq. �2� be-
comes

� · ��n+ +
en+

kT
� �� = 0, �3�

� · ��n− −
en−

kT
� �� = 0. �4�

As K+ and Cl− are the only ions in our model, we use, re-
spectively, “�” and “�” to represent the K+ and Cl− ions in
the whole paper.

A more accurate model should include both electrophore-
sis and electroosmosis into consideration. However, the cur-
rent due to electroosmosis �IEOF� is often much less than that
due to electrophoresis �IEFF�. Only when the diameter of the
pore is about the same size of Debye length does the elec-
troosmosis come into important. Daiguji et al. showed that
IEOF/ IEFF is less than 10% in the cylinder nanochannel that
they considered �20�. For the conical nanopore, since only a
short length at the tip end has the size comparable to Debye
length, the electroosmosis is much less important than elec-
trophoresis. Our 2D numerical calculation also shows that
the calculated current that takes electroosmosis into consid-
eration is only several percent larger than that without elec-
troosmosis. Therefore, neglecting electroosmosis would be a
reasonable approximation.

Directly solving the full three-dimensional PNP equations
is a formidable task in our system. Because the nanopore is
axial symmetric, cylinder coordinate system is optimal for
our calculating. Thus, the three-dimensional domain is sim-
plified to a two-dimensional domain. Figure 1 shows the do-
main and cylinder coordinates for the calculation, where the
conical nanopore is in contact with two reservoirs. It is nec-
essary to take the reservoirs into consideration to avoid the
uncertainty of the boundary conditions at the pore mouths
�20,24�. We find when the sizes of the reservoirs �w and h�
are large enough �typically more than 200 nm�, the calcu-
lated result is almost independent of their size. So we can
arbitrarily set the value of w and h as long as they are larger
than 200 nm and rb. The boundary conditions at the nanop-
ore wall are ���=−� /�0�, Ji�=0; the ends of reservoirs:
�=�b �b=left or right�, representing the applied voltage on
the electrodes ni=n0, where n0 represents the concentration
of KCl bulk solution; at the axis and other walls: ���=0,

Ji�=0. In the above statement, � denotes the wall-normal
component. After solving the coupled Eqs. �1�, �3�, and �4�,
the current of each ion can be calculated by integrating flux
in any cross section of the nanopore

Ii = 2�e� rJidr, i = + ,− . �5�

The dielectric constant of KCl solution � is 80 �20,21,23�.
The diffusion coefficient of K+ and Cl−, D+ and D− are
1.96�10−9 and 2.03�10−9 m2/s, respectively �20,21�. The
surface charge density is approximately −0.24 C/m2 ��1.5
e /nm2� �7,26�.

III. COMPUTATIONAL METHOD

We use finite element method to solve above PNP equa-
tions. These coupled partial differential equations are notori-
ously difficult in numerical calculation; it is almost impos-
sible to converge when solving it directly with the
parameters that taken in experiments. For one thing, the
length of the nanopore ��1 �m� is thousands of times larger
than the diameter of the pore tip ��5 nm�. For another, the
high surface charge density leads to sharp potential gradient
near the surface. Only with lower surface charge density
�20,21� and a small range of voltage bias does the direct
finite element method converge and get the right answer. In
order to solve this problem, we need to develop some new
tactics. One tactic is to provide good initial values for �, n+,
and n−, and decompose the equations to two parts. To fulfill
this goal, we first solve the equations without the applied
voltage, and take the solution as �0, n+

0, n−
0. Under such static

circumstance, since current equals zero, the solution for Eqs.
�3� and �4� becomes n+

0 =n0 exp�−e�0 /kT�, and n−
0

=n0 exp�e�0 /kT�, which in fact stand for the Boltzmann dis-
tribution. Substitute them into Eq. �1�, it becomes

��0 = 2
n0e

��0
sinh� e�0

kT
� . �6�

In this case, the coupled three equations become one. Al-
though it is still nonlinear, it nevertheless is many times
easier to solve. When applying voltage bias, we decompose
�, n+, and n−, with �=�0+�1, n+=n+

0 +n+
1, and n−=n−

0 +n−
1,

together with the decomposition of the boundary conditions.
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FIG. 1. Schematic view of a conical nanopore that connects two
reservoirs �not to scale� and the cylinder coordinates for solving the
PNP equations. “�” stands for the K+ ion and “�” stands for the
Cl− ion. The arrow indicates the positive direction that we define in
the whole paper.
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It is easy to deduce that �1, n+
1, and n−

1 obey the following
equations:

�2�1 = −
e

��0
�n+

1 − n−
1� , �7�

� · ��n+
1 +

e

kT
�n+

1���0 + ��1� + n+
0 � �1�� = 0, �8�

� · ��n−
1 −

e

kT
�n−

1���0 + ��1� + n−
0 � �1�� = 0. �9�

The corresponding boundary conditions at the end of the
reservoirs are �1=�b

1 �b=left or right�, ni
1=0; at all other

walls ���1=0, Ji�=0. Thus, the difficulty for convergence
brought by the surface charge in the conical nanopore only
influences the boundary condition of Eq. �6�, which is much
easier to solve. By doing so, we find that the remaining Eqs.
�7�–�9� are relatively easier to converge. Furthermore, using
the solution under small voltage bias as the initial value of
larger voltage bias will speed up the calculation and bring
convergence.

In some situations, such as high surface charge density
with lower solution concentration, the problem becomes ex-
tremely pathologic, causing divergence of the numerical
solver. Under such circumstances, more tactics to lead the
program convergence are applied. We notice in Eqs. �8� and
�9� that the nonlinearity comes from the term n±

1 ��1. If we
get rid of this term, the equations become linear, which can
quickly converge to the solution. This term, however, is not
necessarily small. A new tactic for solving this problem is to
multiply a coefficient in the nonlinear term, then gradually
increase its value from zero to one. In this process, we al-
ways use the former solution as the later initial value. For
example, solve the equations with 	=0, and use its solutions
as the initial value with 	=0.2, and so forth until 	=1.

With all these tactics, the complete PNP equations are
numerically solvable. We also calibrate the calculation sys-
tem with existing results, following the same steps as re-
ported by Daigui et al. �20�. First, when the radii of rt and rb
are much larger than the Debye length, the surface of the
pore can be regarded as an isolated surface with charge den-
sity �. Based on the Grahame equation �27�, the theoretical
values of surface potentials under three different concen-
trated solutions n0=1 ,0.1,0.01 M are −57.3, −111.6,
−170.5 mV. In comparison, the results from our numerical
calculations are −57.4, −111, −170 mV, with a good agree-
ment with the theoretical values. Secondly, for a cylinder
channel �rt=rb� without surface charge, the current density
can be calculated by Eq. �7� in Ref. �20�. For the concentra-
tion solution n0=0.01 M, L=1.01 �m, and potential bias

�=1 V, the above equation gives jK+ =7.22�104 A/m2

and jCl− =7.48�104 A/m2, while our calculated results with
the PNP equations give jK+ =7.13�104 A/m2 and jCl−

=7.38�104 A/m2, indicating the validity of our calculation
method.

In computer simulation with finite element method, the
mesh cells are split dynamically until the estimated uncer-
tainty in the solution is less than a certain error tolerance

which guarantees convergence of the solution. In our simu-
lation, error tolerance is 1�10−3. �We find that if we set
error tolerance to a smaller value 1�10−4, the numerical
result is almost the same as before, while the time for com-
puting increase substantially. Therefore, we think that an er-
ror tolerance of 1�10−3 is a good trade off between preci-
sion and the time for computing.� Typically, the number of
mesh cells is about 100 000, and CPU time is about one hour
with a 2.8 GHz CPU.

IV. CURRENT RECTIFICATION EFFECT

Figure 2 shows the current rectification effect; the calcu-
lated results are in a good agreement with experimental data.
Slightly adjusting parameters would further improve the
agreement, but this might be meaningless because of the un-
certainties in taking parameters. For example, the exact
shape of the pore may not be ideal conical, the estimated
radius of the tip�rt� which is based on rt=LI /��rbU �9� may
introduce a slight error, the diffusion coefficients might de-
crease slightly because of the restricted size, and they can
also decrease with high concentration. Nevertheless, the
good agreement between experiment and theory clearly dem-
onstrates that PNP equations can essentially be used to study
the ion transport properties in a nanopore with such a dimen-
sion. The powerful PNP equations and our calculating
method could be further used in studying other nanopores
with different geometries and parameters. It also might be
helpful in further devising nanofluidic channels.

To clarify the influence of surface charge on the rectifica-
tion effect, we set surface charge density �=0, and the simu-
lation result shows a linear I-V relationship. That is to say,
the cone shape alone cannot result in such an asymmetric
effect; the surface charge is essential to induce the rectifica-
tion effect �1,5,9�.

We contribute the rectification effect to ion-enrichment
and ion-depletion effects, which are observed in charged cyl-
inder nanochannels both in experiment �28� and theory �20�.
Pu et al. reported that ions �both negative and positive� are

−1 −0.5 0 0.5 1
−15
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0.5M

FIG. 2. The calculated current vs voltage bias under different
concentrations n0=3,1 ,0.5 M. Boxes ���, circles ���, and tri-
angles ��� are the corresponding experimental data for n0

=3,1 ,0.5 M, respectively, which are obtained from Fig. 1�a� in Ref.
�11�. Parameters: rt=3 nm, rb=220 nm, L=12 �m.
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enriched at the cathode end region and depleted at the anode
end region in a charged nanochannel �28�. Daiguji et al. stud-
ied nanofluidic channels and also demonstrated this effect
�20�. Herein, these enrichment and depletion effects are de-
formed due to the specific shape of the conical pore. Figure 3
shows the distribution of K+ and Cl− along the pore axis
when the applied voltage is positive �Fig. 3�a�� and negative
�Fig. 3�b��. While the anode is placed at the base end of the
pore �U�0�, ions deplete almost in the whole nanopore, and
enrich slightly only at the tip end within a short length, as
shown in Fig. 3�a�. Thus the conductivity of the pore sub-
stantially decreases because of the decrease of the ion den-
sity in the pore. The more the voltage bias, the greater the
depletion effect, contributing to lower conductivity. In con-
trast, while the anode is placed at the tip end �U0�, ions
greatly enrich at most part of the nanopore, and deplete only
at the tip end within a short length, as shown in Fig. 3�b�.
Thus the conductivity increases as the increase of the voltage
bias. Compared with the results of a cylinder channel
�20,28�, we continually decrease the cone angle of the nan-
opore. As a result, the ion-enrichment and ion-depletion re-
gion shifts from the mid of the pore toward its base end.
When the nanopore becomes cylindrical shape, this region
reaches the “base end,” which is consistent with the calcula-
tion of Ref. �20� and the experiment result �28�. As an illus-
tration, Fig. 4 shows the case under negative voltage bias.
The difference between Daiguji’s result and ours in the case
of cylindrical shape is that the enrichment and depletion ef-
fect in our case are much stronger because of high surface

charge. We therefore conclude that the specific shape of the
conical pore induces strong ion enrichment and ion depletion
in the middle of the pore, resulting in the diodelike I-V curve
of CCNs.

The ion enrichment and ion depletion effect can be under-
stood in a more intuitive way �15�. Its mechanism can be
compared with nanofluidic diode �21�. In that case, the sur-
face charge densities at the right and left halves have the
same absolute value but of different signs. Thus the concen-
tration of K+ is high at the negative charged end and low at
the positive charged end; the distribution of Cl− is opposite.
The conductivity of the channel is high when the applied
voltage forces both ions flux from higher concentration to
lower concentration, while the opposite voltage bias causes
the depletion of both ions in the mid region of nanochannel
�see Fig. 1 in Ref. �21��. Realizing this fact, we find that the
conical nanopore may be regarded as a deformation of the
nanofluidic diode. Although it only has one kind of charge on
its inner surface, the particular shape of cone helps the for-
mation of asymmetric ion distribution along the axis, which
produces the same effect as in nanofluidic diode. In this case,
K+ is high on the tip region and low at the base, while Cl− is
low at the tip region and relatively high at the base �see Fig.
1�. Comparing with nanofluidic diode, therefore, the voltage
bias in the base-to-tip direction causes the depletion of both
ions in the nanopore, which corresponds to the low conduc-
tivity. Likewise, the voltage bias in the direction of tip-to-
base will induce ion enrichment and high conductivity. In
contrast, a conical nanopore without surface charge does not
have an initial ion distribution as nanofluidic diode, so it has
no ion-depletion and ion-enrichment effect. As a conse-
quence, current is linearly depended on voltage bias as we
mentioned before.

We also find that the profile of electric potential along the
axis under zero voltage bias is similar to a rachet �Fig. 5�a��
�1�, which might be evidence that the rachet model gives a
qualitative explanation of rectification effect in a charged
conical nanopore �1,9,18�. The depth of the potential well,
however, is much less than the one that is calculated from the

−2500 −2000 −1500 −1000 −500 0 500

1

1.5

2

Z(nm)

n(
M

)

0.4

0.6

0.8

1

n(
M

)

K+

Cl−

0.1V

0.5V

−0.5V

−0.1V

a.

b.

FIG. 3. �a� Ion distribution along the axis �r=0� of the nanopore
under positive voltage bias �U�0�. Notice that the concentration
for both ions are almost identical along the axis that we can not
differentiate the two lines for each ion �because of the screen effect,
see Fig. 5�b��. Both cation and anion deplete in the mid of the pore,
and enrich slightly at the tip. �b� Ion distribution along the axis of
the nanopore under negative voltage bias. Both cation and anion
enrich in the middle of the pore, and deplete slightly at the tip. The
parameters are rt=5 nm, rb=500 nm, n0=1 M. In order to see
clearly what happens in the tip of the pore, we just truncate the tip
end with a length L�=2 �m. This means that we fix rt and the angle
� �tan �= �rb−rt� /L�.
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screened electrostatic �Debye� potential �3,8,9�. We remind
the reader that only when e� /kT�1 does Eq. �6� become
linear and give the Debye potential. In the case of a typical
conical nanopore, however, ���100 mV� near the surface is
often larger than kT /e��26 mV�. Therefore, substituting
sinh�e� /kT� with e� /kT will underestimate the screening of
ions in solution.

Figure 5�b� shows the radial ion distribution of K+ and
Cl− near the tip of the nanopore. It clearly shows a large
increase of positive ion concentration near the negative
charged surface, which stands for the formation of electric
double layer. The calculated Debye length is 0.31 nm, ap-
proximately equal to the thickness of the electric double
layer.

V. DISCUSSION AND CONCLUSION

Based on the explanation of the rectification effect in a
nanopore, we argue that a relatively long length of the pore is
indispensable for the CCNs to have notable asymmetric
properties of ion transport. It is the cooperation of the small
diameter of the tip, which is comparable to the thickness of
the double electric layer, and the relatively long cone-shape
body of the charged nanopore that contribute to the ion en-
richment and ion depletion, resulting in current rectification.
If the length of the conical nanopore is too short, the current
rectification will be very weak since the mechanism for ion
enrichment and depletion is weakened. A detailed study of
length dependence verifies this argument. As shown in Fig.
6, the asymmetry in the I-V curve decreases as the length of
the conical pore decreases; it becomes almost linear when
L�=100 nm. Therefore we predict that a conical pore with
the length comparable to its tip diameter cannot have an
appreciable rectification effect. Furthermore, the exact shape
of the tip end within several nanometers may have no appar-
ent influence on current rectification. In experimental reality,
the shape at the tip mouth may not be conical because of
mutual interaction of stopping medium and etchant at the last
several minutes of the etching process �2�. Yet the good
agreement between experiment and theory in this paper
might be the evidence for our argument.

As the length L� that we take into account increases, the
current under a certain voltage bias gradually becomes inde-

pendent of it. Figure 6 indicates that a length L��1 �m at
the tip end is representative of the whole nanopore. This can
be understood by the fact that the electric resistance mainly
comes from the tip region, and the pore diameter is compa-
rable to Debye length only in this region. Therefore, in order
to reduce the amount of calculation, it is reasonable to just
take a relatively shorter length of nanopore near the tip end,
for example, L��1 �m, into consideration. Notice that this
length is still much larger than the pore diameter.

The observation of ion enrichment and ion depletion may
be instructive for future devising complex nanofluidic de-
vices. It gives us a direct view of the ion distribution in the
charged nanochannel under a voltage bias. In a double coni-
cal pore, for instance, ions will be enriched in one half and
depleted in the other. Furthermore, the cone shape is not
necessary for a nanopore to have such asymmetric transport
properties. Based on the ion-enrichment and ion-depletion
effects discussed above, we think that a nanopore with the
same sign charge on its surface is possible to exhibit rectifi-
cation effect if one end of the pore is larger than the other,
and the diameter of the small end is comparable to Debye
length. For example, the pore in Fig. 7�a� can also exhibit
such rectification effect �Fig. 7�b��. This phenomenon has
been observed in the experiment with a similar pore on the
material of Si3N4/Si, when the surface of the nanopore is
charged �29�. Since this kind of nanopore has been exten-
sively studied in serving as single-molecule sensing devices
�29–33�, detailed information of ion transport properties by
directly solving PNP equations can offer useful information
for such studies.
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In conclusion, we developed some tactics to solve PNP
equations directly in a system of CCNs. Based on the results
of numerical calculation, we have a clear understanding of
the asymmetric properties of ion transport in a nanopore or
nanochannel. The particular shape of the conical pore de-
forms the ion-enrichment and ion-depletion effect that were
founded in cylinder channels, causing the ion to be greatly
enriched or depleted in the middle of the pore. Consequently,
the conductivity of the pore is adjusted by the applied volt-
age. The good agreement between theory and experiment
demonstrates that PNP equations are a good model to study
ion transport in nanopores with a dimension of nm. Our cal-

culation method could be further used in other shape pores
with other parameters, and to devise new nanofluidic chan-
nels.
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